High-Dimensional Variable Selection for Competing Risks with Cooperative Penalized Regression «CooPeR»

¹Leibniz Institute for Prevention Research and Epidemiology – BIPS ²LMU Munich ³University of Bremen ⁴Munich Center for Machine Learning

CEN 2023

Introduction

- Settings with two competing events $e \in \{1,2\}$, e.g.,
 - (1) Death from bladder cancer
 - (2) Death from other causes

Introduction

- Settings with two competing events $e \in \{1,2\}$, e.g.,
 - (1) Death from bladder cancer
 - (2) Death from other causes
- Common approach:
 - Fit cause-specific model for event of interest
 - Treats other event as censored
 - \Rightarrow loses information

Introduction

- Settings with two competing events $e \in \{1,2\}$, e.g.,
 - (1) Death from bladder cancer
 - (2) Death from other causes
- Common approach:
 - Fit cause-specific model for event of interest
 - Treats other event as censored
 - \Rightarrow loses information

Main goal: Fit cause-specific model for event 1 using shared information from event 2

Elastic Net

Objective function with negative log-likelihood contribution for observation i:

$$\hat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \quad \sum_{i=1}^{n} \ell(y_i, \mathbf{x}_i^{\top}, \boldsymbol{\beta}) + \lambda \sum_{j=1}^{p} \left(\alpha |\beta_j| + \frac{1-\alpha}{2} \beta_j^2 \right)$$

Elastic Net

Objective function with negative log-likelihood contribution for observation i:

$$\hat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \quad \sum_{i=1}^{n} \ell(y_i, \mathbf{x}_i^{\top}, \boldsymbol{\beta}) + \sum_{j=1}^{p} \frac{\lambda_j}{2} \left(\alpha |\beta_j| + \frac{1-\alpha}{2} \beta_j^2 \right)$$

Feature-weighted elastic net¹ extends objective function:

$$\hat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \quad \sum_{i=1}^{n} \ell(y_i, \mathbf{x}_i^{\top}, \boldsymbol{\beta}) + \lambda \sum_{j=1}^{p} w_j(\boldsymbol{\theta}) \left(\alpha |\beta_j| + \frac{1-\alpha}{2} \beta_j^2 \right)$$

Feature-weighted elastic net¹ extends objective function:

$$\begin{split} \hat{\boldsymbol{\beta}} &= \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \quad \sum_{i=1}^{n} \ell(y_i, \mathbf{x}_i^{\top}, \boldsymbol{\beta}) + \lambda \sum_{j=1}^{p} w_j(\boldsymbol{\theta}) \left(\alpha |\beta_j| + \frac{1 - \alpha}{2} \beta_j^2 \right) \\ w_j(\boldsymbol{\theta}) &= \frac{\sum_{l=1}^{p} \exp(\mathbf{z}_l^{\top} \boldsymbol{\theta})}{p \exp(\mathbf{z}_j^{\top} \boldsymbol{\theta})} \end{split}$$

¹Tay et al. (2023)

Incorporate prior external information with $\mathbf{Z} \in \mathbb{R}^{p imes K}$

Incorporate prior external information with $\mathbf{Z} \in \mathbb{R}^{p imes K}$

Grouping: $\mathbf{Z} \in \mathbb{R}^{5 \times 2}$ $\mathbf{Z} = \begin{pmatrix} 1 & 0\\ 1 & 0\\ 0 & 1\\ 0 & 1\\ 0 & 1 \end{pmatrix}$

Incorporate prior external information with $\mathbf{Z} \in \mathbb{R}^{p imes K}$

Grouping:
$$\mathbf{Z} \in \mathbb{R}^{5 \times 2}$$
 Individual weighting: $\mathbf{Z} \in \mathbb{R}^{5 \times 1}$
 $\mathbf{Z} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$
 $\mathbf{Z} = \begin{pmatrix} 1.5 \\ 1 \\ 1.2 \\ 0.7 \\ 0.3 \end{pmatrix}$

$$w_j(\theta) = \frac{\sum_{l=1}^p \exp(\mathbf{z}_l^\top \theta)}{p \exp(\mathbf{z}_j^\top \theta)}$$

$$w_j(\theta) = \frac{\sum_{l=1}^p \exp(\mathbf{z}_l^\top \theta)}{p \exp(\mathbf{z}_j^\top \theta)}$$

- $\mathbf{z}_j^\top \boldsymbol{\theta}$: "Importance score"
- Larger value \Rightarrow lower w_j

$$w_j(\theta) = \frac{\sum_{l=1}^p \exp(\mathbf{z}_l^\top \theta)}{p \exp(\mathbf{z}_j^\top \theta)}$$

- $\mathbf{z}_j^{\top} \boldsymbol{\theta}$: "Importance score"
- Larger value \Rightarrow lower w_j

• $\boldsymbol{\theta} \in \mathbb{R}^{K \times 1}$ fit internally

•
$$\theta = 0 \Rightarrow w_j = 1$$

Individual Feature Weighting

- Simulation from Tay et al.: ${f Z}$ set to noisy version of true |meta|
- $|\beta_j|$ large \Rightarrow weaker penalization for $\hat{\beta}_j$
- $|\beta_j|$ small \Rightarrow stronger penalization for $\hat{\beta}_j$

1. Set $\hat{\beta}_1^{(0)}, \hat{\beta}_2^{(0)}$ to elastic net solution for $(\mathbf{X}, \mathbf{y}_1), (\mathbf{X}, \mathbf{y}_2)$ with $\mathbf{y}_e := (\mathbf{t}_e, \delta_e)$

1. Set $\hat{\boldsymbol{\beta}}_1^{(0)}, \hat{\boldsymbol{\beta}}_2^{(0)}$ to elastic net solution for $(\mathbf{X}, \mathbf{y}_1), (\mathbf{X}, \mathbf{y}_2)$ with $\mathbf{y}_e := (\mathbf{t}_e, \delta_e)$ 2. For $k = 0, 1, \dots$ until stopped: a) Fit fwelnet $(\mathbf{X}, \mathbf{y}_2, \mathbf{Z}_2 = |\hat{\boldsymbol{\beta}}_1^{(k)}|)$ to determine $|\hat{\boldsymbol{\beta}}_2^{(k+1)}|$

1. Set
$$\hat{\beta}_{1}^{(0)}, \hat{\beta}_{2}^{(0)}$$
 to elastic net solution for $(\mathbf{X}, \mathbf{y}_{1}), (\mathbf{X}, \mathbf{y}_{2})$ with $\mathbf{y}_{e} := (\mathbf{t}_{e}, \delta_{e})$
2. For $k = 0, 1, \dots$ until stopped:
a) Fit fwelnet $(\mathbf{X}, \mathbf{y}_{2}, \mathbf{Z}_{2} = |\hat{\beta}_{1}^{(k)}|)$ to determine $|\hat{\beta}_{2}^{(k+1)}|$
b) Fit fwelnet $(\mathbf{X}, \mathbf{y}_{1}, \mathbf{Z}_{1} = |\hat{\beta}_{2}^{(k+1)}|)$ to determine $|\hat{\beta}_{1}^{(k+1)}|$

Simulation Study

10

- Simulation adapted from Binder et al.²
- Mimics gene expression data
- Comparison with CoxBoost³, Random Survival Forests ⁴

²Binder, Allignol, et al. (2009)
 ³Binder and Schumacher (2008)
 ⁴Ishwaran et al. (2014)

Simulation Study

- Simulation adapted from Binder et al.²
- Mimics gene expression data
- Comparison with CoxBoost³, Random Survival Forests ⁴
- n = 400, p = 5000,
- 4 covariate blocks
- 4 informative variables each

- ⁴Ishwaran et al. (2014)

²Binder, Allignol, et al. (2009)

³Binder and Schumacher (2008)

Assignment of True Effects

- Block 1 (Mutual): Same effect on both cause-specific hazards
- Block 2 (**Reversed**): Cause 1 (+) Cause 2 (-)
- Block 3 (Disjoint): Cause 1 or 2

Assignment of True Effects

- Block 1 (Mutual): Same effect on both cause-specific hazards
- Block 2 (**Reversed**): Cause 1 (+) Cause 2 (-)
- Block 3 (Disjoint): Cause 1 or 2
- Block 4 (Cor. Noise)
- Rest: Uncorrelated noise

Positive Predictive Value Probability a selected variable is informative

False Positive Rate Proportion of noise variables falsely selected

• Clinical & gene expression features ⁵

Application on Bladder Cancer Data

- Clinical & gene expression features ⁵
- Proxy to estimate variable selection performance:
 - 1. Apply algorithms for variable selection
 - 2. Fit standard cause-specific Cox model using only selected variables
 - 3. Evaluate prediction performance (Brier(t), AUC(t))

Application on Bladder Cancer Data

- Clinical & gene expression features ⁵
- Proxy to estimate variable selection performance:
 - 1. Apply algorithms for variable selection
 - 2. Fit standard cause-specific Cox model using only selected variables
 - 3. Evaluate prediction performance (Brier(t), AUC(t))
- Results:
 - CooPeR-selected variables mostly identical to pen. Cox regression
 - Difference in metrics far from conclusive in either direction

Application on Bladder Cancer Data

14

- Clinical & gene expression features ⁵
- Proxy to estimate variable selection performance:
 - 1. Apply algorithms for variable selection
 - 2. Fit standard cause-specific Cox model using only selected variables
 - 3. Evaluate prediction performance (Brier(t), AUC(t))
- Results:
 - CooPeR-selected variables mostly identical to pen. Cox regression
 - Difference in metrics far from conclusive in either direction
- No shared effects? Effects too small?

⁵Dyrskjøt et al. (2005)

15

• Promising variable selection behavior in simulations

- Promising variable selection behavior in simulations
- So far no promising results on real data

- Promising variable selection behavior in simulations
- So far no promising results on real data
- Lack of readily available high-dimensional data with competing risks

- Promising variable selection behavior in simulations
- So far no promising results on real data
- Lack of readily available high-dimensional data with competing risks
- $\bullet\,$ Generalization to e>2 events: Unclear

Thank you for your attention!

www.leibniz-bips.de/en

Contact Lukas Burk Leibniz Institute for Prevention Research and Epidemiology – BIPS Achterstraße 30 D-28359 Bremen burk@leibniz-bips.de

References I

- Binder, Harald, Arthur Allignol, et al. (Apr. 1, 2009). "Boosting for High-Dimensional Time-to-Event Data with Competing Risks". In: Bioinformatics 25.7, pp. 890–896. ISSN: 1367-4803. DOI: 10.1093/bioinformatics/btp088.
- Binder, Harald and Martin Schumacher (2008). "Adapting Prediction Error Estimates for Biased Complexity Selection in High-Dimensional Bootstrap Samples". In: Statistical Applications in Genetics and Molecular Biology 7.1, Article12. ISSN: 1544-6115. DOI: 10.2202/1544-6115.1346. pmid: 18384265.
- Dyrskjøt, Lars et al. (June 1, 2005). "A Molecular Signature in Superficial Bladder Carcinoma Predicts Clinical Outcome". In: Clinical Cancer Research: An Official Journal of the American Association for Cancer Research 11.11, pp. 4029–4036. ISSN: 1078-0432.
 DOI: 10.1158/1078-0432.CCR-04-2095. pmid: 15930337.

References II

18

 Ishwaran, Hemant et al. (Oct. 1, 2014). "Random Survival Forests for Competing Risks".
 In: Biostatistics 15.4, pp. 757–773. ISSN: 1465-4644. DOI: 10.1093/biostatistics/kxu010.

 Tay, Jingyi Kenneth et al. (2023). "Feature-Weighted Elastic Net: Using "Features of Features" for Better Prediction". In: Statistica Sinica. ISSN: 10170405. DOI: 10.5705/ss.202020.0226.