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Introduction

® Settings with two competing events e € {1, 2}, eg,
(1) Death from bladder cancer

(2) Death from other causes

® Common approach:
® Fit cause-specific model for event of interest
® Treats other event as censored
=> loses information

Main goal: Fit cause-specific model for event 1 using shared information from event 2
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Feature-Weighted Elastic Net

Feature-weighted elastic net' extends objective function:
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Feature-Weighted Elastic Net

Feature-weighted elastic net' extends objective function:
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Feature-Weighted Elastic Net

Incorporate prior external information with Z € RP*X

Grouping: Z € R5*2 Individual weighting: Z € R5*!
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Feature-Weighted Elastic Net
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° ZJTG: “Importance score” e 0 ¢ REXL fitinternally

® Larger value = lower w; * )=0= w; = 1



Individual Feature Weighting

® Simulation from Tay et al.: Z set to noisy version of true | 3|
® |3,] large = weaker penalization for 3;

° |ﬁj| small = stronger penalization for Bj
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“Cooperative Penalized Regression” (CooPeR)
Based on multi-task algorithm suggested by Tay et al.

1. Set ,BA<10), 6(20) to elastic net solution for (X, y;), (X, y5) withy, := (t.,d,)

er-e

2. Fork = 0,1, ... until stopped:
a) Fit fwelnet (X, Vo, Ly = ‘IHA(lk)D to determine ’,3 (e+1) ‘

A(k+1)

b) Fit fwelnet (X, yi,4, = |B, D to determine ’,31

k+1)‘
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Simulation Study

® Simulation adapted from Binder et al.
® Mimics gene expression data

® Comparison with CoxBoost®, Random Survival Forests *

® n =400, p =5000,
® 4 covariate blocks

4 informative variables each

“Binder, Allignol, et al. (2009)
3Binder and Schumacher (2008)
“Ishwaran et al. (2014)
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Assignment of True Effects

Block 1 (Mutual): Same effect on both cause-specific hazards
Block 2 (Reversed): Cause 1 (+) Cause 2 (-)
Block 3 (Disjoint): Cause 1 or 2

Block 4 (Cor. Noise)
Rest: Uncorrelated noise




Positive Predictive Value
Probability a selected variable is informative

B1 (Mutual) B2 (Reversed) B3 (Disjoint)
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False Positive Rate
Proportion of noise variables falsely selected

B1 (Mutual) B2 (Reversed) B3 (Disjoint) B4 (Cor. Noise) Noise
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Application on Bladder Cancer Data

® Clinical & gene expression features °

® Proxy to estimate variable selection performance:
1. Apply algorithms for variable selection
2. Fit standard cause-specific Cox model using only selected variables
3. Evaluate prediction performance (Brier(t), AUC(t))

® Results:
® CooPeR-selected variables mostly identical to pen. Cox regression

® Difference in metrics far from conclusive in either direction

® No shared effects? Effects too small?

°Dyrskjgt et al. (2005)
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Conclusion & Outlook

Promising variable selection behavior in simulations
So far no promising results on real data
Lack of readily available high-dimensional data with competing risks

Generalization to e > 2 events: Unclear



Thank you for your attention!

www.leibniz-bips.de/en

Contact

Lukas Burk

Leibniz Institute for Prevention Research
and Epidemiology - BIPS

Achterstralie 30

D-28359 Bremen

burk@leibniz-bips.de




References |

Binder, Harald, Arthur Allignol, et al. (Apr. 1, 2009). “Boosting for High-Dimensional
Time-to-Event Data with Competing Risks”. In: Bioinformatics 25.7, pp. 890-896. ISSN:
1367-4803. DOI: 10.1093/bioinformatics/btp08s.

Binder, Harald and Martin Schumacher (2008). “Adapting Prediction Error Estimates for
Biased Complexity Selection in High-Dimensional Bootstrap Samples”. In: Statistical
Applications in Genetics and Molecular Biology 71, Article12. 1ISSN: 1544-6115. DOI:
10.2202/1544-6115.1346. pmid: 18384265.

Dyrskjgt, Lars et al. (June 1, 2005). “A Molecular Signature in Superficial Bladder
Carcinoma Predicts Clinical Outcome”. In: Clinical Cancer Research: An Official Journal
of the American Association for Cancer Research 1111, pp. 4029-4036. I1SSN: 1078-0432.
DOI: 10.1158/1078-0432.CCR-04-2095. pmid: 15930337.


https://doi.org/10.1093/bioinformatics/btp088
https://doi.org/10.2202/1544-6115.1346
18384265
https://doi.org/10.1158/1078-0432.CCR-04-2095
15930337

References Il

Ishwaran, Hemant et al. (Oct. 1, 2014). “Random Survival Forests for Competing Risks”.
In: Biostatistics 15.4, pp. 757-773. 1SSN: 1465-4644. DOI:
10.1093/biostatistics/kxu010.

Tay, Jingyi Kenneth et al. (2023). “Feature-Weighted Elastic Net: Using "Features of
Features” for Better Prediction”. In: Statistica Sinica. ISSN: 10170405. DO
10.5705/55.202020.0226.


https://doi.org/10.1093/biostatistics/kxu010
https://doi.org/10.5705/ss.202020.0226

