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Introduction

• Settings with two competing events 𝑒 ∈ {1, 2}, e.g.,
(1) Death from bladder cancer
(2) Death from other causes

• Common approach:
• Fit cause-specific model for event of interest
• Treats other event as censored

⇒ loses information

Main goal: Fit cause-specific model for event 1 using shared information from event 2
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Elastic Net

Objective function with negative log-likelihood contribution for observation 𝑖:

̂𝜷 = argmin
𝜷

𝑛
∑
𝑖=1

ℓ(𝑦𝑖, x⊤
𝑖 , 𝜷) + 𝜆

𝑝
∑
𝑗=1

(𝛼|𝛽𝑗| + 1 − 𝛼
2 𝛽2

𝑗 )
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Feature-Weighted Elastic Net

Feature-weighted elastic net1 extends objective function:

̂𝜷 = argmin
𝜷

𝑛
∑
𝑖=1

ℓ(𝑦𝑖, x⊤
𝑖 , 𝜷) + 𝜆

𝑝
∑
𝑗=1

𝑤𝑗(𝜃) (𝛼|𝛽𝑗| + 1 − 𝛼
2 𝛽2

𝑗 )

𝑤𝑗(𝜃) = ∑𝑝
𝑙=1 exp(z⊤

𝑙 𝜃)
𝑝 exp(z⊤

𝑗 𝜃)

1Tay et al. (2023)
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Feature-Weighted Elastic Net

Incorporate prior external information with Z ∈ ℝ𝑝×𝐾

Grouping: Z ∈ ℝ5×2

Z =
⎛⎜⎜⎜⎜⎜⎜
⎝

1 0
1 0
0 1
0 1
0 1

⎞⎟⎟⎟⎟⎟⎟
⎠

Individual weighting: Z ∈ ℝ5×1

Z =
⎛⎜⎜⎜⎜⎜⎜
⎝

1.5
1

1.2
0.7
0.3

⎞⎟⎟⎟⎟⎟⎟
⎠
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Feature-Weighted Elastic Net

𝑤𝑗(𝜃) = ∑𝑝
𝑙=1 exp(z⊤

𝑙 𝜃)
𝑝 exp(z⊤

𝑗 𝜃)

• z⊤
𝑗 𝜃: “Importance score”

• Larger value ⇒ lower 𝑤𝑗

• 𝜃 ∈ ℝ𝐾×1 fit internally
• 𝜃 = 0 ⇒ 𝑤𝑗 = 1
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Individual Feature Weighting

• Simulation from Tay et al.: Z set to noisy version of true |𝜷|
• |𝛽𝑗| large ⇒ weaker penalization for ̂𝛽𝑗
• |𝛽𝑗| small ⇒ stronger penalization for ̂𝛽𝑗
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“Cooperative Penalized Regression” (CooPeR)
Based on multi-task algorithm suggested by Tay et al.

1. Set ̂𝜷(0)
1 , ̂𝜷(0)

2 to elastic net solution for (X, y1), (X, y2) with y𝑒 ∶= (t𝑒, 𝛿𝑒)
2. For 𝑘 = 0, 1, … until stopped:

a) Fit fwelnet (X, y2, Z2 = ∣ ̂𝜷(𝑘)
1 ∣) to determine ∣ ̂𝜷(𝑘+1)

2 ∣

b) Fit fwelnet (X, y1, Z1 = ∣ ̂𝜷(𝑘+1)
2 ∣) to determine ∣ ̂𝜷(𝑘+1)

1 ∣
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Simulation Study

• Simulation adapted from Binder et al.2

• Mimics gene expression data
• Comparison with CoxBoost3, Random Survival Forests 4

• n = 400, p = 5000,
• 4 covariate blocks
• 4 informative variables each

2Binder, Allignol, et al. (2009)
3Binder and Schumacher (2008)
4Ishwaran et al. (2014)
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Assignment of True Effects

• Block 1 (Mutual): Same effect on both cause-specific hazards
• Block 2 (Reversed): Cause 1 (+) Cause 2 (-)
• Block 3 (Disjoint): Cause 1 or 2

• Block 4 (Cor. Noise)
• Rest: Uncorrelated noise
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Positive Predictive Value
Probability a selected variable is informative

B1 (Mutual) B2 (Reversed) B3 (Disjoint)

C
ause 1

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

CoxBoost

RSF

Pen. Cox

CooPeR

PPV [%]
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False Positive Rate
Proportion of noise variables falsely selected

B1 (Mutual) B2 (Reversed) B3 (Disjoint) B4 (Cor. Noise) Noise

C
ause 1

0 10 20 30 40 0 5 10 15 0 1 2 3 4 0 0.5 1 1.5 2 0 0.5 1 1.5

CoxBoost

RSF

Pen. Cox

CooPeR

FPR [%]
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Application on Bladder Cancer Data

• Clinical & gene expression features 5

• Proxy to estimate variable selection performance:
1. Apply algorithms for variable selection
2. Fit standard cause-specific Cox model using only selected variables
3. Evaluate prediction performance (Brier(t), AUC(t))

• Results:
• CooPeR-selected variables mostly identical to pen. Cox regression
• Difference in metrics far from conclusive in either direction

• No shared effects? Effects too small?

5Dyrskjøt et al. (2005)
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Conclusion & Outlook

• Promising variable selection behavior in simulations

• So far no promising results on real data
• Lack of readily available high-dimensional data with competing risks
• Generalization to 𝑒 > 2 events: Unclear
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Thank you for your attention!

www.leibniz-bips.de/en

Contact
Lukas Burk

Leibniz Institute for Prevention Research
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D-28359 Bremen

burk@leibniz-bips.de
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