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Introduction

® There are many survival learners (“models”) to choose from

® Advantages and disadvantages often unclear, specific to setting
® \arious comparisons exist in literature

® |imited scope (learners, tasks, evaluation measures)

® Focus on individual / new method = no neutral comparison

® No (or limited) quantitative comparison

= Needs comprehensive comparison!



Quick Summary

32 tasks
18 learners
2 tuning measures

9 evaluation measures




Quick Summary

32 tasks
18 learners
2 tuning measures

9 evaluation measures

Large-scale = Generalizability

Neutral = Fair comparison




Quick Summary

® 32 tasks

® 18 learners

2 tuning measures

9 evaluation measures

Large-scale = Generalizability

Neutral = Fair comparison

= The largest survival benchmark to date as far as we know



Scope

The “Standard Setting™

® Single-event outcome: §; € {0, 1}
Low-dimensional: 2 < p < n

No time-varying covariates

Right-censoring only

At least 100 observed events



Tasks

32 tasks collected from R packages on CRAN

Minimum g25% Median q75% Maximum

N 137 446 820 2378 52410
p 2 4 5 7 25
Observed Events 101 194 323 699 5616

Cens. % 6 32 48 74 95
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Learners

18 learners implemented in R and available via the mlr3 ' framework

® Baseline: Kaplan-Meier & Nelson-Aalen, Akritas
® (lassical: Cox, penalized (L1,L2), parametric (AFT)
® Trees: Individuals and ensembles

® Boosting: Gradient- and likelihood-based
Other: SYM

"Lang et al. (2019)



List of Learners (Baseline, Classical)

Name Abbreviation Package
Kaplan-Meier KM survival
Nelson-Aalen NA survival

Akritas AK survivalmodels
Cox Regression CPH survival
Penalized Cox Regression (L1, L2) GLM glmnet

Penalized Cox Regression (L1,L2) Pen penalized
Parametric (AFT) Par survival
Flexible Parametric Splines Flex flexsurv
Survival SVM SSVM survivalsvm




List of Learners (Trees, Boosting)

Name Abbreviation  Package

Decison Tree RRT rpart

Random Survival Forest RFSRC randomForestSRC
Random Survival Forest RAN ranger
Conditional Inference Forest CIF partykit

Oblique RSF ORSF aorsf
Model-Based Boosting MBO mboost
Likelihood-Based Boosting CoxB CoxBoost
Gradient Boosting (Cox objective) XGBCox xgboost

Gradient Boosting (AFT objective) XGBAFT xgboost
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Tuning

Tuning spaces discussed with learner authors

Resampling: Nested cross-validation (5-fold outer, 3-fold inner)
Strategy: Random Search

Budget: Tuning stopped if either is reached

1. Number of evaluations: ng,ais = Mparameters X 90

2. Tuning time of 150 hours (6% days)
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Evaluation

® Main Results:

® Friedman rank sum tests

® (ritical difference plots? based on Bonferroni-Dunn tests
® 3 types of metrics: Discrimination, Calibration, Scoring Rules
® Tuned on 2 different measures

® Harrell's C (Discrimination)

® Right-Censored Log Loss (Scoring Rule)

2Demsar (2006)



Boxplot (Harrel's C, higher is better)

Harrell's C
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Boxplot (IBS, truncated)
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Critical Difference: Bonferroni-Dunn (Harrell’s C)

Critical Difference = 3.73
Lower is better E—
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Critical Difference: Bonferroni-Dunn (IBS/RCLL)

Critical Difference = 3.73
Lower is better —
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Evaluation measure: Integrated Brier Score (Improper)
Tuning measure: Right-Censored Log Loss
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Closing Remarks

® Only computationally feasible due to resources of ARCC ?
® Sequential runtime / 18 years
® Effective runtime & 32 days

® Experimental design is not perfect, but it was possible to conduct

Results still need processing, checking, ...
® Preliminary conclusion: Cox regression — hard to beat since 1972!

*Advanced Research Computing Center, Beartooth Computing Environment, University of Wyoming.



Thank you for your attention!
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