

A Large-Scale Neutral Comparison Study of Survival Models on Low-Dimensional Data

Burk, L.^{1,2,3,4} Zobolas, J.⁵ Bischl, B.^{2,4} Bender, A.^{2,4} Wright, M. N.^{1,3} Sonabend, R.^{6,7}

¹Leibniz Institute for Prevention Research and Epidemiology – BIPS

²LMU Munich ³University of Bremen

⁴Munich Center for Machine Learning (MCML)

⁵Institute for Cancer Research, Oslo

⁶OSPO Now ⁷Imperial College, London

July 29rd, 2024

1

• There are many survival learners ("models") to choose from

- There are many survival learners ("models") to choose from
- Advantages and disadvantages often unclear, specific to setting

- There are many survival learners ("models") to choose from
- Advantages and disadvantages often unclear, specific to setting
- Various comparisons exist in literature

- There are many survival learners ("models") to choose from
- Advantages and disadvantages often unclear, specific to setting
- Various comparisons exist in literature
- Limited scope (learners, tasks, evaluation measures)

- There are many survival learners ("models") to choose from
- Advantages and disadvantages often unclear, specific to setting
- Various comparisons exist in literature
- Limited scope (learners, tasks, evaluation measures)
- Focus on individual / new method \Rightarrow no neutral comparison

- There are many survival learners ("models") to choose from
- Advantages and disadvantages often unclear, specific to setting
- Various comparisons exist in literature
- Limited scope (learners, tasks, evaluation measures)
- Focus on individual / new method \Rightarrow no neutral comparison
- No (or limited) quantitative comparison

- There are many survival learners ("models") to choose from
- Advantages and disadvantages often unclear, specific to setting
- Various comparisons exist in literature
- Limited scope (learners, tasks, evaluation measures)
- Focus on individual / new method \Rightarrow no neutral comparison
- No (or limited) quantitative comparison

- There are many survival learners ("models") to choose from
- Advantages and disadvantages often unclear, specific to setting
- Various comparisons exist in literature
- Limited scope (learners, tasks, evaluation measures)
- Focus on individual / new method \Rightarrow no neutral comparison
- No (or limited) quantitative comparison

⇒ Needs comprehensive comparison!

Quick Summary

- **32** tasks
- 18 learners
- 2 tuning measures
- 8 evaluation measures

Quick Summary

- **32** tasks
- 18 learners
- 2 tuning measures
- 8 evaluation measures
- Large-scale ⇒ Generalizability
- Neutral \Rightarrow Fair comparison

Quick Summary

2

- 32 tasks
- 18 learners
- 2 tuning measures
- 8 evaluation measures
- Large-scale ⇒ Generalizability
- Neutral \Rightarrow Fair comparison

 \Rightarrow The largest survival benchmark to date as far as we know

Scope

3

The "Standard Setting":

- \bullet Single-event outcome: $\delta_i \in \{0,1\}$
- Low-dimensional: $2 \le p < n$
- No time-varying covariates
- Right-censoring only
- At least 100 observed events

Tasks

32 tasks collected from R packages on CRAN

	Minimum	q25%	Median	q75%	Maximum
N	137	446	820	2378	52410
р	2	3	5	7	25
Observed Events	101	194	336	1034	5616
Cens. %	6	32	48	74	95

)

18 learners implemented in R and available via the mlr3 ¹ framework

¹Lang et al. (2019)

)

18 learners implemented in R and available via the mlr3 ¹ framework

• Baseline: Kaplan-Meier & Nelson-Aalen, Akritas

¹Lang et al. (2019)

5

18 learners implemented in R and available via the mlr3 ¹ framework

- Baseline: Kaplan-Meier & Nelson-Aalen, Akritas
- Classical: Cox, penalized (L1,L2), parametric (AFT)

¹Lang et al. (2019)

5

18 learners implemented in R and available via the mlr3 ¹ framework

• Baseline: Kaplan-Meier & Nelson-Aalen, Akritas

• Classical: Cox, penalized (L1,L2), parametric (AFT)

• Trees: Individuals and ensembles

¹Lang et al. (2019)

)

18 learners implemented in R and available via the mlr3 ¹ framework

• Baseline: Kaplan-Meier & Nelson-Aalen, Akritas

• Classical: Cox, penalized (L1,L2), parametric (AFT)

• Trees: Individuals and ensembles

• Boosting: Gradient- and likelihood-based

¹Lang et al. (2019)

5

18 learners implemented in R and available via the mlr3 ¹ framework

• Baseline: Kaplan-Meier & Nelson-Aalen, Akritas

• Classical: Cox, penalized (L1,L2), parametric (AFT)

• Trees: Individuals and ensembles

• Boosting: Gradient- and likelihood-based

• Other: SVM

¹Lang et al. (2019)

List of Learners (Baseline, Classical)

Abbreviation Name Package Kaplan-Meier ΚM survival Nelson-Aalen survival NΑ Akritas survivalmodels ΑK Cox Regression survival CPH Penalized Cox Regression (L1, L2) GI M glmnet Penalized Cox Regression (L1, L2) penalized Pen Parametric (AFT) survival Par Flexible Parametric Splines Flex flexsurv Survival SVM survivalsvm SSVM

List of Learners (Trees, Boosting)

Name	Abbreviation	Package	
Decison Tree	RRT	rpart	
Random Survival Forest	RFSRC	randomForestSRC	
Random Survival Forest	RAN	ranger	
Conditional Inference Forest	CIF	partykit	
Oblique RSF	ORSF	aorsf	
Model-Based Boosting	MBO	mboost	
Likelihood-Based Boosting	CoxB	CoxBoost	
Gradient Boosting (Cox objective)	XGBCox	xgboost	
Gradient Boosting (AFT objective)	XGBAFT	xgboost	

8

• Tuning spaces discussed with learner authors

- Tuning spaces discussed with learner authors
- Resampling: Nested cross-validation (5-fold outer, 3-fold inner)

- Tuning spaces discussed with learner authors
- **Resampling**: Nested cross-validation (5-fold outer, 3-fold inner)
- Strategy: Random search

- Tuning spaces discussed with learner authors
- **Resampling**: Nested cross-validation (5-fold outer, 3-fold inner)
- Strategy: Random search
- Budget: Tuning stopped if either of two criteria is reached

- Tuning spaces discussed with learner authors
- **Resampling**: Nested cross-validation (5-fold outer, 3-fold inner)
- Strategy: Random search
- Budget: Tuning stopped if either of two criteria is reached
 - 1. Number of evaluations: $n_{\rm evals} = n_{\rm parameters} \times 50$

- Tuning spaces discussed with learner authors
- Resampling: Nested cross-validation (5-fold outer, 3-fold inner)
- Strategy: Random search
- Budget: Tuning stopped if either of two criteria is reached
 - 1. Number of evaluations: $n_{\rm evals} = n_{\rm parameters} \times 50$
 - 2. Tuning time of 150 hours ($6\frac{1}{4}$ days)

- Tuning spaces discussed with learner authors
- Resampling: Nested cross-validation (5-fold outer, 3-fold inner)
- Strategy: Random search
- Budget: Tuning stopped if either of two criteria is reached
 - 1. Number of evaluations: $n_{\rm evals} = n_{\rm parameters} \times 50$
 - 2. Tuning time of 150 hours ($6\frac{1}{4}$ days)
- Fallback: Impute result with KM

9

9

Exceptions to the previously stated rules:

• Some learners (RRT, Par) have small, finite search spaces \Rightarrow exhaustive grid search

9

- Some learners (RRT, Par) have small, finite search spaces \Rightarrow exhaustive grid search
- Task veteran has so few observations ⇒ 4 outer resampling folds, ensuring min.
 30 observed events per outer fold

9

- Some learners (RRT, Par) have small, finite search spaces \Rightarrow exhaustive grid search
- Task veteran has so few observations ⇒ 4 outer resampling folds, ensuring min.
 30 observed events per outer fold
- CoxBoost learner tunes itself with internal CV ⇒ set to use 3 folds as well

9

- Some learners (RRT, Par) have small, finite search spaces \Rightarrow exhaustive grid search
- Task veteran has so few observations ⇒ 4 outer resampling folds, ensuring min.
 30 observed events per outer fold
- CoxBoost learner tunes itself with internal CV ⇒ set to use 3 folds as well
- We tune cv.glmnet for alpha, while it tunes itself for lambda

Evaluation

10

• Main Results:

Evaluation

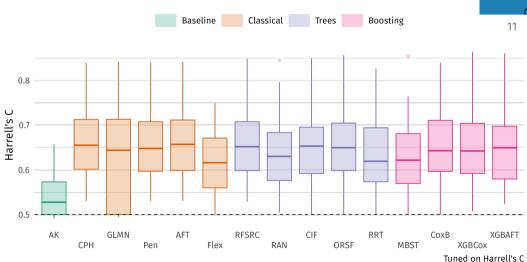
- Main Results:
 - Friedman rank sum tests

- Main Results:
 - Friedman rank sum tests
 - Critical difference plots² based on Bonferroni-Dunn tests

- Main Results:
 - Friedman rank sum tests
 - Critical difference plots² based on Bonferroni-Dunn tests
- 3 types of metrics: Discrimination, Calibration, Scoring Rules

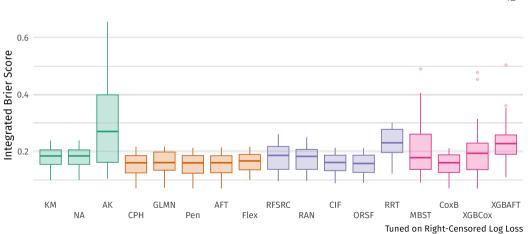
- Main Results:
 - Friedman rank sum tests
 - Critical difference plots² based on Bonferroni-Dunn tests
- 3 types of metrics: Discrimination, Calibration, Scoring Rules
- Tuned on 2 different measures

- Main Results:
 - Friedman rank sum tests
 - Critical difference plots² based on Bonferroni-Dunn tests
- 3 types of metrics: Discrimination, Calibration, Scoring Rules
- Tuned on 2 different measures
 - Harrell's C (Discrimination)

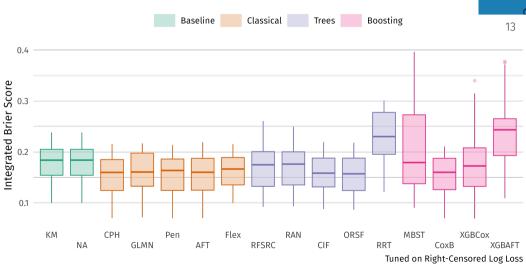

Fvaluation

- Main Results:
 - Friedman rank sum tests
 - Critical difference plots² based on Bonferroni-Dunn tests
- 3 types of metrics: Discrimination, Calibration, Scoring Rules
- Tuned on 2 different measures
 - Harrell's C (Discrimination)
 - Right-Censored Log Loss (Scoring Rule)

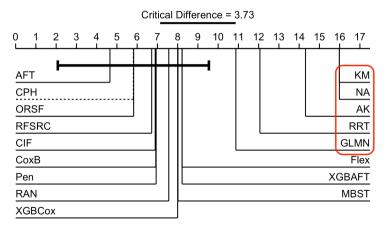
Boxplot (Harrel's C, higher is better)



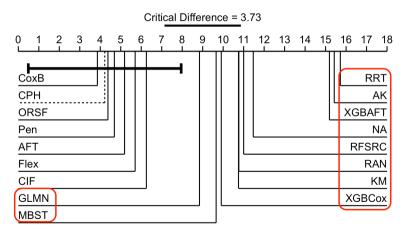
Boxplot (IBS, lower is better)



Boxplot (IBS, truncated)



Critical Difference: Bonferroni-Dunn (Harrell's C)



Critical Difference: Bonferroni-Dunn (IBS/RCLL)

16

• Only computationally feasible due to resources of ARCC ³

³Advanced Research Computing Center, Beartooth Computing Environment, University of Wyoming.

- Only computationally feasible due to resources of ARCC ³
 - Sequential runtime \approx 18 years

³Advanced Research Computing Center, Beartooth Computing Environment, University of Wyoming.

- Only computationally feasible due to resources of ARCC ³
 - Sequential runtime \approx 18 years
 - Effective runtime (incl reruns) \approx 32 days

³Advanced Research Computing Center, Beartooth Computing Environment, University of Wyoming.

- Only computationally feasible due to resources of ARCC ³
 - Sequential runtime \approx 18 years
 - Effective runtime (incl reruns) \approx 32 days
- Experimental design is not perfect, but it was possible to conduct

³Advanced Research Computing Center, Beartooth Computing Environment, University of Wyoming.

- Only computationally feasible due to resources of ARCC ³
 - Sequential runtime \approx 18 years
 - Effective runtime (incl reruns) \approx 32 days
- Experimental design is not perfect, but it was possible to conduct
- Conclusion: Cox regression hard to beat since 1972!

³Advanced Research Computing Center, Beartooth Computing Environment, University of Wyoming.

- Only computationally feasible due to resources of ARCC ³
 - Sequential runtime \approx 18 years
 - Effective runtime (incl reruns) \approx 32 days
- Experimental design is not perfect, but it was possible to conduct
- Conclusion: Cox regression hard to beat since 1972!

³Advanced Research Computing Center, Beartooth Computing Environment, University of Wyoming.

16

- Only computationally feasible due to resources of ARCC ³
 - Sequential runtime \approx 18 years
 - Effective runtime (incl reruns) \approx 32 days
- Experimental design is not perfect, but it was possible to conduct
- Conclusion: Cox regression hard to beat since 1972!

More results at projects.lukasburk.de and we have a preprint on arXiv!

³Advanced Research Computing Center, Beartooth Computing Environment, University of Wyoming.

Thank you for your attention!

www.leibniz-bips.de/en

Contact
Lukas Burk
Leibniz Institute for Prevention Research
and Epidemiology – BIPS
Achterstraße 30
D-28359 Bremen
burk@leibniz-bips.de

References I

- Demšar, Janez (2006). "Statistical comparisons of classifiers over multiple data sets". In: Journal of Machine learning research 7.1, pp. 1–30.
- Lang, Michel et al. (2019). "mlr3: A modern object-oriented machine learning framework in R". In: Journal of Open Source Software 4.44, p. 1903. DOI: 10.21105/joss.01903.