

Random Planted Forest A Directly Interpretable Tree Ensemble

Joseph T. Meyer⁵ Lukas Burk^{1,2,3,4} Munir Hiabu⁶ Enno Mammen⁵

¹Leibniz Institute for Prevention Research and Epidemiology – BIPS ²LMU Munich ³University of Bremen ⁴Munich Center for Machine Learning (MCML) ⁵Heidelberg University ⁶University of Copenhagen

DAGStat 2025 — March 27th, 2025

1

• Tree-based methods like Random Forest (RF):

- Tree-based methods like Random Forest (RF):
 - Fast & flexible

- Tree-based methods like Random Forest (RF):
 - Fast & flexible
 - Interpretable? \rightarrow It depends

- Tree-based methods like Random Forest (RF):
 - Fast & flexible
 - Interpretable? \rightarrow It depends
- Wishlist:

- Tree-based methods like Random Forest (RF):
 - Fast & flexible
 - Interpretable? \rightarrow It depends
- Wishlist:
 - Meaningful feature importance

- Tree-based methods like Random Forest (RF):
 - Fast & flexible
 - Interpretable? \rightarrow It depends
- Wishlist:
 - Meaningful feature importance
 - Quantification of main- and interaction effects

- Tree-based methods like Random Forest (RF):
 - Fast & flexible
 - Interpretable? \rightarrow It depends
- Wishlist:
 - Meaningful feature importance
 - Quantification of main- and interaction effects
- Additive models useful for both

- Tree-based methods like Random Forest (RF):
 - Fast & flexible
 - Interpretable? \rightarrow It depends
- Wishlist:
 - Meaningful feature importance
 - Quantification of main- and interaction effects
- Additive models useful for both

- Tree-based methods like Random Forest (RF):
 - Fast & flexible
 - Interpretable? \rightarrow It depends
- Wishlist:
 - Meaningful feature importance
 - Quantification of main- and interaction effects
- Additive models useful for both

 \rightarrow Random Planted Forest (RPF): Additive Random Forest

• Regression with target $Y_i \in \mathbb{R}$, features $X_i \in \mathbb{R}^p$, instance \mathbf{x}_i

- Regression with target $Y_i \in \mathbb{R}$, features $X_i \in \mathbb{R}^p$, instance \mathbf{x}_i
- Expand prediction $\hat{y}_i = \hat{m}(\mathbf{x}_i)$ into

- Regression with target $Y_i \in \mathbb{R}$, features $X_i \in \mathbb{R}^p$, instance \mathbf{x}_i
- Expand prediction $\hat{y}_i = \hat{m}(\mathbf{x}_i)$ into
 - \hat{m}_0 : Average prediction ("intercept")

- Regression with target $Y_i \in \mathbb{R}$, features $X_i \in \mathbb{R}^p$, instance \mathbf{x}_i
- Expand prediction $\hat{y}_i = \hat{m}(\mathbf{x}_i)$ into
 - \hat{m}_0 : Average prediction ("intercept")
 - Terms \hat{m}_S with feature $S \subseteq \{1, \dots, p\}$

- Regression with target $Y_i \in \mathbb{R}$, features $X_i \in \mathbb{R}^p$, instance \mathbf{x}_i
- Expand prediction $\hat{y}_i = \hat{m}(\mathbf{x}_i)$ into
 - \hat{m}_0 : Average prediction ("intercept")
 - Terms \hat{m}_S with feature $S \subseteq \{1, \dots, p\}$

- Regression with target $Y_i \in \mathbb{R}$, features $X_i \in \mathbb{R}^p$, instance \mathbf{x}_i
- Expand prediction $\hat{y}_i = \hat{m}(\mathbf{x}_i)$ into
 - \hat{m}_0 : Average prediction ("intercept")
 - $\bullet~$ Terms \hat{m}_S with feature $S\subseteq\{1,\ldots,p\}$

$$\begin{split} \hat{m}(\mathbf{x}_i) = & \hat{m}_0 + \\ & \underbrace{\hat{m}_1(x_1) + \hat{m}_2(x_2) + \hat{m}_3(x_3)}_{\text{Main effect terms}} + \end{split}$$

- Regression with target $Y_i \in \mathbb{R}$, features $X_i \in \mathbb{R}^p$, instance \mathbf{x}_i
- Expand prediction $\hat{y}_i = \hat{m}(\mathbf{x}_i)$ into
 - \hat{m}_0 : Average prediction ("intercept")
 - Terms \hat{m}_S with feature $S \subseteq \{1, \dots, p\}$

$$\begin{split} \hat{m}(\mathbf{x}_{i}) = & \hat{m}_{0} + \\ & \underbrace{\hat{m}_{1}(x_{1}) + \hat{m}_{2}(x_{2}) + \hat{m}_{3}(x_{3})}_{\text{Main effect terms}} + \\ & \underbrace{\hat{m}_{1,2}(x_{1}, x_{2}) + \hat{m}_{1,3}(x_{1}, x_{3}) + \hat{m}_{2,3}(x_{2}, x_{3})}_{\text{2nd order interactions}} + \end{split}$$

- Regression with target $Y_i \in \mathbb{R}$, features $X_i \in \mathbb{R}^p$, instance \mathbf{x}_i
- Expand prediction $\hat{y}_i = \hat{m}(\mathbf{x}_i)$ into
 - \hat{m}_0 : Average prediction ("intercept")
 - Terms \hat{m}_S with features $S \subseteq \{1, \dots, p\}$

$$\begin{split} \hat{m}(\mathbf{x}_{i}) = & \hat{m}_{0} + \\ & \underbrace{\hat{m}_{1}(x_{1}) + \hat{m}_{2}(x_{2}) + \hat{m}_{3}(x_{3})}_{\text{Main effect terms}} + \\ & \underbrace{\hat{m}_{1,2}(x_{1}, x_{2}) + \hat{m}_{1,3}(x_{1}, x_{3}) + \hat{m}_{2,3}(x_{2}, x_{3})}_{\text{2nd order interactions}} + \\ & \underbrace{\hat{m}_{1,2,3}(x_{1}, x_{2}, x_{3})}_{\text{3rd order interactions}} \end{split}$$

Trees in Random Forest

8

• Ensemble of trees like RF

- Ensemble of trees like RF
- Splits nodes multiple times (→ non-binary trees!)

- Ensemble of trees like RF
- Splits nodes multiple times (→ non-binary trees!)
- Nodes keep track of features involved in construction

- Ensemble of trees like RF
- Splits nodes multiple times (\rightarrow non-binary trees!)
- Nodes keep track of features involved in construction
- Degree of interaction can be constrained

- Ensemble of trees like RF
- Splits nodes multiple times (→ non-binary trees!)
- Nodes keep track of features involved in construction
- Degree of interaction can be constrained
- Prediction built incrementally using residuals (cf. Gradient Boosting)

- Ensemble of trees like RF
- Splits nodes multiple times (→ non-binary trees!)
- Nodes keep track of features involved in construction
- Degree of interaction can be constrained
- Prediction built incrementally using residuals (cf. Gradient Boosting)
- Tree stops after adjustable number of splits

• **Bikeshare** regression dataset¹

¹UCI ML repository

- **Bikeshare** regression dataset¹
- Target **bikers**: Number of bikers per hour in 2011/2012

- Bikeshare regression dataset ¹
- Target **bikers**: Number of bikers per hour in 2011/2012
- Focus on 3 features for illustration

- Bikeshare regression dataset ¹
- Target **bikers**: Number of bikers per hour in 2011/2012
- Focus on 3 features for illustration
 - hour of day $\in \{0,1,\ldots,23\}$

- Bikeshare regression dataset ¹
- Target **bikers**: Number of bikers per hour in 2011/2012
- Focus on 3 features for illustration
 - hour of day $\in \{0,1,\ldots,23\}$
 - temp normalized temperature $\in [0,1]$

- Bikeshare regression dataset¹
- Target **bikers**: Number of bikers per hour in 2011/2012
- Focus on 3 features for illustration
 - hour of day $\in \{0,1,\ldots,23\}$
 - temp normalized temperature $\in [0,1]$
 - workingday \in {workingday, no workingday}

- Bikeshare regression dataset¹
- Target **bikers**: Number of bikers per hour in 2011/2012
- Focus on 3 features for illustration
 - hour of day $\in \{0,1,\ldots,23\}$
 - temp normalized temperature $\in [0,1]$
 - workingday \in {workingday, no workingday}
- Average prediction: $\hat{m}_0 \approx$ 144

Main Effects

Main Effects

Hour imes Working Day: "Rush Hour Effect"

 $\ldots + \hat{m}_{\rm hr,workingday}({\rm hr,workingday}) + \ldots$

11

No Workingday Workingday

More 2nd Order Interactions

12

📕 No Workingday 📕 Workingday

 $+ \hat{m}_{\rm temp,workingday}({\rm temp,workingday})$

More 2nd Order Interactions

0

40

 $+\hat{m}_{\rm hr,temp}({\rm hr,temp})+\ldots$

3rd Order Interaction

Feature Importance in RPF

$$\mathrm{FI}_S = \frac{1}{n} \sum_{i=1}^n |\hat{m}_S(\mathbf{x}_i)|$$

• Average of absolute terms \hat{m}_S for S of interest

Feature Importance in RPF

$$\mathrm{FI}_S = \frac{1}{n} \sum_{i=1}^n |\hat{m}_S(\mathbf{x}_i)|$$

- Average of absolute terms \hat{m}_S for S of interest
- Scores also per interaction term

Feature Importance in RPF

$$\mathrm{FI}_S = \frac{1}{n} \sum_{i=1}^n |\hat{m}_S(\mathbf{x}_i)|$$

- Average of absolute terms \hat{m}_S for S of interest
- Scores also per interaction term
- Importance scores on same scale as prediction

Feature Importance: All Terms

Degree of Interaction 📒 1 📕 2 📕 3

16

 (\uparrow) Gains in interpretability \Rightarrow (\downarrow) sacrifices in predictive performance?

16

(\uparrow) Gains in interpretability \Rightarrow (\downarrow) sacrifices in predictive performance?

• Benchmark on 28 datasets ² comparing RPF with XGBoost & RF

²Fischer et al. (2023): OpenML-CTR23

16

(\uparrow) Gains in interpretability $\Rightarrow (\downarrow)$ sacrifices in predictive performance?

- Benchmark on **28** datasets ² comparing RPF with XGBoost & RF
- \rightarrow RPF never best, rarely bad, usually close to XGBoost

²Fischer et al. (2023): OpenML-CTR23

16

(\uparrow) Gains in interpretability $\Rightarrow (\downarrow)$ sacrifices in predictive performance?

- Benchmark on **28** datasets ² comparing RPF with XGBoost & RF
- \rightarrow RPF never best, rarely bad, usually close to XGBoost
- RPF slower (especially with large data)

²Fischer et al. (2023): OpenML-CTR23

Benchmark Results (Selected Tasks)

Benchmark Results (Selected Tasks)

18

18

Random Planted Forests: Additive Random Forests

• (\uparrow) Feature importance on same scale as target

18

- (\uparrow) Feature importance on same scale as target
- (\uparrow) Main- and interaction effects

18

- (\uparrow) Feature importance on same scale as target
- (\uparrow) Main- and interaction effects
- (\uparrow) R package available ³

³github.com/PlantedML/randomPlantedForest

18

- (\uparrow) Feature importance on same scale as target
- (\uparrow) Main- and interaction effects
- (\uparrow) R package available ³
- (\rightarrow) Competetive predictive performance (mostly)

³github.com/PlantedML/randomPlantedForest

18

- (\uparrow) Feature importance on same scale as target
- (\uparrow) Main- and interaction effects
- (\uparrow) R package available ³
- (\rightarrow) Competetive predictive performance (mostly)
- (\u03c6) Slower for large data (Optimization WIP!)

³github.com/PlantedML/randomPlantedForest

18

- (\uparrow) Feature importance on same scale as target
- (\uparrow) Main- and interaction effects
- (\uparrow) R package available ³
- (\rightarrow) Competetive predictive performance (mostly)
- (\u03c4) Slower for large data (Optimization WIP!)
- Related work: glex ⁴: Same decomposition but post-hoc for XGBoost & RF

³github.com/PlantedML/randomPlantedForest

⁴Hiabu et al. (2023): Unifying local and global model explanations [...]

Thank you for your attention!

www.leibniz-bips.de/en

Contact Lukas Burk Leibniz Institute for Prevention Research and Epidemiology – BIPS Achterstraße 30 D-28359 Bremen burk@leibniz-bips.de

