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Motivation

• Tree-based methods like Random Forest (RF):

• Fast & flexible
• Interpretable? → It depends

• Wishlist:

• Meaningful feature importance
• Quantification of main- and interaction effects

• Additive models useful for both

→ Random Planted Forest (RPF): Additive Random Forest
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Functional ANOVA Expansion

• Regression with target 𝑌𝑖 ∈ ℝ, features 𝑋𝑖 ∈ ℝ𝑝, instance x𝑖

• Expand prediction ̂𝑦𝑖 = 𝑚̂(x𝑖) into

• 𝑚̂0: Average prediction (“intercept”)
• Terms 𝑚̂𝑆 with feature 𝑆 ⊆ {1, … , 𝑝}

𝑚̂(x𝑖) =𝑚̂0+
𝑚̂1(𝑥1) + 𝑚̂2(𝑥2) + 𝑚̂3(𝑥3)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Main effect terms

+
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Trees in Random Forest
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Figure: CARTlike
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Planted Trees (I)
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Planted Trees (II)
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Figure: Planted-large
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Key features of Random Planted Forests

• Ensemble of trees like RF

• Splits nodes multiple times (→ non-binary trees!)
• Nodes keep track of features involved in construction
• Degree of interaction can be constrained
• Prediction built incrementally using residuals (cf. Gradient Boosting)
• Tree stops after adjustable number of splits
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Application Example

• Bikeshare regression dataset 1

• Target bikers: Number of bikers per hour in 2011/2012
• Focus on 3 features for illustration

• hour of day ∈ {0, 1, … , 23}
• temp normalized temperature ∈ [0, 1]
• workingday ∈ {workingday, no workingday}

• Average prediction: 𝑚̂0 ≈ 144

1UCI ML repository

https://archive.ics.uci.edu/dataset/275/bike+sharing+dataset
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Main Effects

𝑚̂ = 𝑚̂0 + 𝑚̂hr(hr) + 𝑚̂temp(temp) + 𝑚̂workingday(workingday) + …
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Hour × Working Day: “Rush Hour Effect”

… + 𝑚̂hr,workingday(hr, workingday) + …
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More 2nd Order Interactions

+𝑚̂temp,workingday(temp, workingday)

+𝑚̂hr,temp(hr, temp) + …
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More 2nd Order Interactions

+𝑚̂temp,workingday(temp, workingday) +𝑚̂hr,temp(hr, temp) + …
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3rd Order Interaction
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Feature Importance in RPF

FI𝑆 = 1
𝑛

𝑛
∑
𝑖=1

|𝑚̂𝑆(x𝑖)|

• Average of absolute terms 𝑚̂𝑆 for 𝑆 of interest

• Scores also per interaction term
• Importance scores on same scale as prediction
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Feature Importance: All Terms
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No Free Lunch

(↑) Gains in interpretability ⇒ (↓) sacrifices in predictive performance?

• Benchmark on 28 datasets 2 comparing RPF with XGBoost & RF
• → RPF never best, rarely bad, usually close to XGBoost
• RPF slower (especially with large data)

2Fischer et al. (2023): OpenML-CTR23
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Benchmark Results (Selected Tasks)
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Summary

Random Planted Forests: Additive Random Forests

• (↑) Feature importance on same scale as target
• (↑) Main- and interaction effects
• (↑) R package available 3

• (→) Competetive predictive performance (mostly)
• (↓) Slower for large data (Optimization WIP!)
• Related work: glex 4: Same decomposition but post-hoc for XGBoost & RF

3github.com/PlantedML/randomPlantedForest
4Hiabu et al. (2023): Unifying local and global model explanations […]

https://github.com/PlantedML/randomPlantedForest
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