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Motivation

® Tree-based methods like Random Forest (RF):

® Fast & flexible

® |nterpretable? - It depends
® Wishlist:

® Meaningful feature importance

® Quantification of main- and interaction effects
® Additive models useful for both

- Random Planted Forest (RPF): Additive Random Forest
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Functional ANOVA Expansion

® Regression with target Y; € R, features X, € RP, instance x;
® Etxpand prediction §; = m(x;) into
® my: Average prediction (“intercept”)

® Terms mg with features S C {1, ..., p}

m(x;) =my+
my (1) +My(Ty) + mg(zs) +
Main effect terms

My o(T1,Ty) + My 3(T1,3) + Mg 3(T9, T3) +

2nd order interactions

m1,2,3(x1=9027953)

3rd order interaction




Trees in Random Forest
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Key features of Random Planted Forests

Ensemble of trees like RF

Splits nodes multiple times (= non-binary trees!)

Nodes keep track of features involved in construction

Degree of interaction can be constrained

Prediction built incrementally using residuals (cf. Gradient Boosting)

Tree stops after adjustable number of splits
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Application Example

® Bikeshare regression dataset'
® Target bikers: Number of bikers per hour in 2011/2012
® Focus on 3 features for illustration

® hour of day € {0,1,...,23}

® temp normalized temperature € [0, 1]

® workingday € {workingday, no workingday}

TUCI ML repository


https://archive.ics.uci.edu/dataset/275/bike+sharing+dataset

Application Example

Bikeshare regression dataset '

Target bikers: Number of bikers per hour in 2011/2012

Focus on 3 features for illustration
® hour of day € {0,1,...,23}
® temp normalized temperature € [0, 1]
® workingday € {workingday, no workingday}

® Average prediction: my A 144

TUCI ML repository


https://archive.ics.uci.edu/dataset/275/bike+sharing+dataset
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100

-100

o

0 5 10 15 20
hr

20 0.3
0
g 202
2 2
<€ 20 e
<E€
0.1
-40
-60 TECEEEEEEEEREEE PR E LR LR LR EEEE T 0.0 ———
0.00 025 050 0.75 1.0C No Workingday Workingday
temp workingday

m - 7”7\’1,0 + mhr(hr) + mtemp(temp) + mworkingday(workingday) + .



Hour X Working Day: “Rush Hour Effect”
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More 2nd Order Interactions
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More 2nd Order Interactions

1.00

g5 0.75 ' I I i ' |

g a | i

£ 0 £ 050 i

H Q
=
9
<

E10 0.00 .......‘........f

LI L A U I O A
0.00 0.25 0.50 0.75 1.0C hr
temp
A | -
B No Workingday M Workingday Mhr, temp -40 0 40

—I—ﬁztempmorkingday(temp, workingday) +ﬁzhr’temp(hr, temp) + ...



3rd Order Interaction
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Feature Importance in RPF

1<~ .
Flg = 3 ling(x;)
=1

® Average of absolute terms mg for .S of interest
® Scores also per interaction term
® |mportance scores on same scale as prediction



Feature Importance: All Terms
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No Free Lunch

(1) Gains in interpretability = (1) sacrifices in predictive performance?

® Benchmark on 28 datasets 2 comparing RPF with XGBoost & RF
® - RPF never best, rarely bad, usually close to XGBoost

® RPF slower (especially with large data)

2Fischer et al. (2023): OpenML-CTR23



Benchmark Results (Selected Tasks)

kin8nm
(8192 x 8)

RPF m»
XGBoost

RPF (2)

I+
XGBoost (2) I
RF -+

0.10 0.12 0.14 0.16
RMSE




Benchmark Results (Selected Tasks)

RPF

RPF (2)

XGBoost (2)

RF

0.10

XGBoost ~Hﬂ—

0.12

kin8nm
(8192 x 8)

0.14
RMSE

RPF

XGBoost

—l RPF (2)
l XGBoost (2)

RF

0.16

miami_housing
(13932 x 15)

Eﬁ*

: ——
—

75000 80000 85000 90000 95000
RMSE



Summary

Random Planted Forests: Additive Random Forests



https://github.com/PlantedML/randomPlantedForest

Summary

Random Planted Forests: Additive Random Forests

® (1) Feature importance on same scale as target



https://github.com/PlantedML/randomPlantedForest

Summary

Random Planted Forests: Additive Random Forests

® (1) Feature importance on same scale as target
® (1) Main- and interaction effects



https://github.com/PlantedML/randomPlantedForest

Summary

Random Planted Forests: Additive Random Forests

® (1) Feature importance on same scale as target
® (1) Main- and interaction effects
® (1)R package available ®

3github.com/PlantedML/randomPlantedForest


https://github.com/PlantedML/randomPlantedForest

Summary

Random Planted Forests: Additive Random Forests

® (1) Feature importance on same scale as target
® (1) Main- and interaction effects

® (1)R package available ®

® (-) Competetive predictive performance (mostly)

3github.com/PlantedML/randomPlantedForest


https://github.com/PlantedML/randomPlantedForest

Summary

Random Planted Forests: Additive Random Forests

(1) Feature importance on same scale as target
(1) Main- and interaction effects

® ()R package available
(=) Competetive predictive performance (mostly)
(L)s

1) Slower for large data (Optimization WIP!)

3github.com/PlantedML/randomPlantedForest


https://github.com/PlantedML/randomPlantedForest

Summary

Random Planted Forests: Additive Random Forests

(1) Feature importance on same scale as target
(1) Main- and interaction effects
® ()R package available
(=) Competetive predictive performance (mostly)
(L) Slower for large data (Optimization WIP!)
® Related work: glex *: Same decomposition but post-hoc for XGBoost & RF

3github.com/PlantedML/randomPlantedForest
“Hiabu et al. (2023): Unifying local and global model explanations [...]



https://github.com/PlantedML/randomPlantedForest

Thank you for your attention!
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